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ABSTRACT: Nanomechanical resonators are widely operated as
force and mass sensors with sensitivities in the zepto-Newton
(10−21) and yocto-gram (10−24) regime, respectively. Their
accuracy, however, is usually undermined by high uncertainties in
the effective mass of the system, whose estimation is a nontrivial
task. This critical issue can be addressed in levitodynamics, where
the nanoresonator typically consists of a single silica nanoparticle
of well-defined mass. Yet, current methods assess the mass of the
levitated nanoparticles with uncertainties up to a few tens of
percent, therefore preventing to achieve unprecedented sensing
performances. Here, we present a novel measurement protocol
that uses the electric field from a surrounding plate capacitor to
directly drive a charged optically levitated particle in moderate
vacuum. The developed technique estimates the mass within a statistical error below 1% and a systematic error of ∼2%, and
paves the way toward more reliable sensing and metrology applications of levitodynamics systems.
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Nanomechanical resonators play a leading role in the field
of force,1 mass,2 and charge3 sensing. Thermal noise

represents the ultimate limitation in the their sensitivity,4,5 and
hence, clamped resonators are usually operated in cryogenic
environments.6

Owing to their unprecedented decoupling from the
environment, levitated nanomechanical systems have recently
been able to reach room temperature performances com-
parable to such clamped cryogenic nanoresonators,7−9 yet with
a sensible reduction of the complexity of the apparatus.
Moreover, the negligible mechanical stresses introduced by
levitation allow to fulfill the rigid body approximation. As a
result, the mass of the resonator is uniquely defined by the
inertial mass of the levitated nanoparticle and does not require
precise assessment of the system’s geometry, knowledge on
material properties, and complex flexural models for the shape
of the oscillation modes, as it is the case for clamped systems.
Despite zepto-Newton resonant force sensitivities with

levitated nanoparticles in vacuum have been predicted10 and
demonstrated,11 and recent experiments with free falling
nanoparticles enable the detection of static forces,12 the
accuracy of these results does not outperform that of existing
systems. In most of the levitation experiments, in fact, the
uncertainties on the detected forces are of the order of few tens
of percent,12 sometimes even as high as 50%.13 Such large
errors arise from uncertainties in the particle displacement
calibration,14 whose accuracy is critically affected by the poor

knowledge on the particle’s mass. This results in severe
limitations on their sensing and metrology applications, where
the accuracy of a measurement is just as important as its
precision.
Silica micro- and nanospheres are the most commonly used

type of particle in levitated sensing experiments. Due to their
fabrication process,15 these particles feature a finite size
distribution with a 2−5% coefficient of variation.16 This,
together with even higher uncertainties on the density of the
amorphous silica used (up to 20%17), leads to inaccurate
values of the particle’s mass. One could avoid assumptions of
the manufacturer specifications by relying on the kinetic theory
of gases to calculate the radius of the particle.18 Also in this
case, however, the final measurement of the mass is affected by
uncertainties on the material density and on other quantities,
such as pressure and molar mass19 of the surrounding media. A
more accurate estimation of the particle’s mass is therefore
highly desirable, as it would boost the accuracy of sensors
based on levitated particles.
Here, we propose and experimentally demonstrate a

measurement protocol that is unaffected by the above-
mentioned uncertainties (density, pressure, size, etc.) and
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leads to an assessment of the particle’s mass within 2.2%
systematic error and 0.9% statistical error. Our method exploits
a new design of an optical trap in which a pair of electrodes is
placed around the focus and is based on the analysis of the
response of a trapped charged particle to an external electric
field. Careful error estimation has been carried out in order to
assess the final mass uncertainty, including the treatment of
possible anharmonicities in the trapping potential. The
technique we propose is easy to implement in any vacuum
trapping setup and improves by more than an order of
magnitude the accuracy of most precision measurements.
Experimental Set-Up. The experimental setup is depicted

in Figure 1a. A single silica nanoparticle ( = ±d 143 4 nm in

diameter; nominal value of the manufacturer) is optically
trapped in vacuum with a tightly focused laser beam
(wavelength λ = 1064 nm, power ≃P 75 mW , =NA 0.8).
The oscillation of the particle along the x-mode is monitored
with a balanced split detection scheme that provides a signal
v t( ) proportional to the particle displacement =x t v t c( ) ( )/ cal,
with ccal being the linear calibration factor of the detection
system.14 Along the same axis, a pair of electrodes (see Figure
1b) form a parallel plate capacitor that we use to generate an
oscillating electric field ω=E t E t( ) cos( )0 dr at the particle

position, which in turn induces a harmonic force F t( )el on the
charged particle.
The equation of motion of the particle can be described by a

thermally and harmonically driven damped resonator:

̈ + Γ ̇ + = +mx m x kx F t F t( ) ( )th el (1)

Here, m is the mass of the particle, Γ is the damping rate and
= Ωk m 0

2 is the stiffness of the optical trap, with Ω0 being the
mechanical eigenfrequency of the oscillator. The first forcing
term Fth models the random collisions with residual gas
molecules in the chamber. It can be expressed as ση=F t( )th ,
where η t( ) has a Gaussian probability distribution that satisfies
η η δ⟨ + ′ ⟩ = ′t t t t( ) ( ) ( ), and σ relates to the damping via the
fluctuation−dissipation theorem: σ = Γk Tm2 B , with kB
being the Boltzmann constant and T the bath temperature.
The second forcing term Fel arises from the Coulomb
interaction of the charged particle with the external electric
field E t( ) and can be expressed as ω=F t F t( ) cos( )el 0 dr , where

= ·F q E0 0. The net charge = ·q n qq e, with qe being the
elementary charge and nq the number of charges on the
particle, can be controlled20 by applying a high DC voltage

≈ ±V 1 kVHV on a bare electrode placed on a side of the
vacuum chamber. Via the process of corona discharge,21 this
creates a plasma consisting of a mixture of positive or negative
ions (depending on the VHV polarity) and electrons that can
ultimately add to, or remove from, the levitated particle one
single elementary charge at a time. Positive and negative ions
are accelerated toward opposite directions due to the presence
of the electric field from the electrode. As a result, the ratio of
positive to negative charges reaching the particle is biased by
the electrode polarity, thus allowing us to fully control the final
charge of the particle within positive or negative values (see
Supplementary Section S3). This is a significant advantage
compared to other discharging techniques that rely on shining
UV light on the particle,22 where the net charge can only be
diminished until reaching neutrality.

Measurement. A single nanoparticle is loaded in the trap
at ambient pressure by nebulizing a solution of ethanol and
monodispersed silica particles into the chamber. The pressure
is then decreased down to ≲P 1 mBar where the net number
of charges nq can be set with zero uncertainty. Finally, the
system is brought back up to an operating pressure of

≃P 50 mBar. At this pressure the particle is in the ballistic
regime, but its dynamics is still highly damped. This condition
is favorable for our experiments, as the high damping reduces
the contribution of anharmonicities to the dynamics of the
particle,10 allowing us to apply the fully linear harmonic
oscillator model which predicts

ω ω ω

ω ω
τ ω ω τ
ω ω
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Here, ωS ( )x is the single-sided power spectral density (PSD) of
the thermally and harmonically driven resonator, whose
dynamics x t( ) is being observed for a time τ= 2 . Note
that ωS ( )x relates to the experimentally measured PSD ωS ( )v

via the calibration factor ccal, such that ω ω= ·S c S( ) ( )v xcal
2 .14

In the absence of the electric driving, the motion of the
particle in the optical trap is purely thermal, and its PSD is well

Figure 1. Experimental setup. (a) A microscope objective (OBJ)
focuses a laser beam inside a vacuum chamber, where a single silica
nanoparticle is trapped in the focus. The light scattered by the particle
is collected with an aspheric lens (AL), and the motion of the particle
is detected in a split detection scheme. A pair of electrodes is
connected to the amplified signal from a function generator (FG),
creating an electric field that drives the charged particle. An FPGA
and a lock-in amplifier are used to bandpass and record the signal
from the detector. (b) A camera image of the setup inside of the
vacuum chamber. The purple glow on the side of the chamber is
emitted by a generated bare electrode connected to a high voltage
(HV) DC source and is used to control the net charge of the particle.
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approximated by a typical Lorentzian function. From an
experimental measurement of ωS ( )v

th , we can extract the value

of ωS ( )v
th

dr and perform maximum likelihood estimation
(MLE) to obtain the values of Ω0 and Γ as fitting parameters.
Likewise, when the coherent driving is applied to the system,
we are able to determine the magnitude of the driven
resonance ωS ( )v dr and to calculate from this measurement the

solely electric contribution ω ω ω= −S S S( ) ( ) ( )v v v
el

dr dr
th

dr .
Figure 2 exemplifies this process for ω π =/(2 ) 135 kHzdr

and for a signal-to-noise ω ω= ≃S SSNR ( )/ ( ) 60v vdr
th

dr . The
curve shown is computed with Bartlett’s method from an
ensemble of =N 1000psd averages of individual PSDs,
calculated from = 40 ms position time traces. In Supple-
mentary Section S2, we verify that over the whole measure-
ment time = × =t N 40 spsd the system does not suffer
from low frequency drifts. The electrically driven peak can be
fully resolved (see inset in Figure 2), and its shape agrees with
the Fourier transform of the rectangular window function used
for PSD estimation. The gray trace at the bottom of the plot
represents the measurement noise, which is ∼40 db below the
thermal signal and more than 55 db below the driven peak.
Finally, the solid line is a MLE fit of a thermally driven
Lorentzian to the experimental data. Note that, to perform the
fit and to retrieve the value of ωS ( )v

th
dr , the electrically driven

peak is numerically filtered out by applying to the time series
data set a notch filter of variable bandwidth b around ωdr. The
value of b depends on the driving amplitude, with typical
values of the order of tens of Hertz. In Supplementary Section
S7, we show how this method introduces negligible errors that
remain always below ∼0.01%.

The mass of the particle can ultimately be calculated

considering the ratio = = |ω
ω ω ω

−
=RS

S
S

S S
S

( )

( )
v

v

v v

v

el
dr

th
dr

th

th dr
. In fact, note

that, while both Sv
el and Sv

th depend quadratically on ccal, the

latter scales as −m 1 while the former scales as −m 2. Thus, from
their ratio we obtain

=
Γ

m
n q E

k T R8
q e

S

2 2
0

2

B (3)

To ensure the validity of the linear resonator model, we also
considered a cubic term in the restoring force and performed
Monte Carlo Simulations of the resulting Duffing resonator
with parameters compatible with our experimental settings and
an overestimated value of the Duffing coefficient,23,24

ξ μ= −12 m 2. The outcome of the simulations is detailed in
Supplementary Section S5 and confirms the negligibility of the
nonlinear terms for pressures of ≃P 50 mBar. We stress that
this assumption fails already at slightly lower pressures of
∼10 mBar where a more complicated nonlinear response
model would be needed.

Error Estimation. In order to estimate the systematic error
in the calculated mass, a careful study of all the sources of error
has to be carried out. Table 1 summarizes the absolute values

and the relative uncertainties of the quantities entering in eq 3.
The specific case reported corresponds to point at
ω = 125 kHzdr of the data shown in Figure 3. For several
variables and constants, we can neglect the corresponding
uncertainty. Accordingly, for the error propagation we set
σ σ σ= = = 0q ke B

. Note that the specific number of charges

=n 8q chosen in our measurements is arbitrary. Other
measurements have been previously carried out with different
values of nq and have confirmed the independency of the
method from nq, provided the dynamics is maintained in the
linear regime of oscillation. Concerning the other quantities,
instead, we follow the arguments stated below:

(i) The electric field was simulated with the finite elements
method and was mainly affected by uncertainties in the
geometry of the electrodes (see Supplementary Section
S4 for further details). We measure a distance between
electrodes of μ μ= ±d 1410 m 13 mel , and a corre-
sponding electric field (for an applied dc potential of

V1 ) = ±E 577 6 V/m0 .

Figure 2. Measurement. Power spectral density ωS ( )v of a thermally
and harmonically driven resonator at =P 50 mBar. The broad peak
centered at Ω ≃ 125 kHz0 is the oscillator response to the thermal
driving that we fit with a Lorentzian function (orange) to extract

ωS ( )v
th

dr , together with Ω0, Γ and the corresponding uncertainties.
The narrow band peak at ω = 135 kHz, also shown in detail in the
inset, depicts to the electric excitation, from which we retrieve

ω ω ω= −S S S( ) ( ) ( )v v v
el

dr dr
th

dr . The gray spectrum at the bottom of
the plot is the measurement noise, which is ≳ 40 dB below the
particle’s signal.

Table 1. Uncertainties Tablea

aThe different quantities zi involved in the calculation of the mass are
here reported together with the corresponding error σzi

. Color coding
indicates negligibility of the uncertainty, with gray rows implying
σ ≃ 0zi

.
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(ii) The two heights of the power spectral densities ωS ( )v dr

and ωS ( )v
th

dr from which the ratio RS is calculated are
only affected by statistical errors since simulations
confirm the validity of the linear model. σSv

is thus
calculated from an ensemble of NPSD measurements as
the standard error of the mean, with the N1/ PSD trend

being verified. The same applies for Sv
th, where in this

case σSv
th is calculated in the absence of external electric

driving.
(iii) The thermal bath surrounding the particle is assumed to

be constantly thermalized with the setup and, more
precisely, with the vacuum chamber walls. Again, the
moderate-high pressure =P 50 mBar ensures this
assumption. Multiple temperature measurements on
the surface of the vacuum chamber are carried out
with a precision thermistor ( °0.5 C accuracy) in order to
exclude the presence of temperature gradients and
significant variations during the experimental times (see
Supplementary Section S8 for data and further
discussion).

(iv) The uncertainty of fitting parameters such as Ω0 and Γ
can be extracted directly from the Lorentzian fits.

The variables involved in eq 3 can be considered
uncorrelated, and the standard uncertainty propagation25 can
be performed. A detailed derivation is provided in Supple-
mentary Section S9.
Results. The statistical error σm

stat of our measurement is
calculated from the standard deviation of a set of 20
independent measurements performed at ω π =/2 130 kHzdr

and for ≃SNR 60. We find σ =m/ 0.7%m
stat . This dispersion is

displayed as error bars in Figure 3, where we plot the
calculated mass as a function of ωdr, again for ≃SNR 60. The
region within green dot-dashed lines corresponds to the
standard deviation σ± m

sweep of the presented data.
The compatibility σ σ≃m m

stat sweep and the reproducibility of
the mass calculated at different driving frequencies reveal that

the measurements are not affected by nonlinearities in the
system. In fact, strong driving fields lead to anharmonic particle
dynamics, which in turn introduce an unphysical mass
dependency on ωdr. Figure S6a in Supplementary Section S2
exemplifies this situation and shows how in the nonlinear
regime the calculated mass is affected by severe systematic
errors. In our method, we avoid this situation by maintaining
the driving field amplitude below 5.5kV/m. In this regime, we
have additionally verified the independency of the calculated
mass from the electric field E0 and tested the quadratic scaling
of RS as a function of E0. These measurements are described in
Figure S3 of the Supporting Information. The excellent
agreement with the model provides a further validation of eq
3 and of the harmonic approximation made. As a final remark,
we compare the measured mass m of a = ±d 143 4 nm
diameter particle with the one calculated from the
manufacturer specifications mman. Assuming a nominal density

for Stöber silica of ρ = 2200 kg/mp
3 and propagating the

c o r r e s p o n d i n g u n c e r t a i n t i e s , o n e fi n d s
= ±m (3.37 0.84) fgman , which shows good agreement with

the value measured with our method = ±m (4.01 0.1) fg .
Conclusions. In conclusion, we presented a novel protocol

to calculate the mass of a levitated nanosensor through its
electrically driven dynamics. We stress that this method only
assumes a driven damped harmonic oscillator. As such, it is
suitable to measure the oscillator’s mass in a large variety of
optical trapping systems and possibly also in more general
mechanical resonator schemes. The level of precision and
accuracy obtained establishes an improvement of more than
one order of magnitude compared to the state-of-the-art
methods, enabling paramount advances in the applications of
levitated systems as force sensors and accelerometers. More-
over, this technique leads to a much more reliable calibration
of the particle’s displacement,14 again providing an important
step for the use of levitated systems for metrology and sensing
applications, and toward compliance requirements of ground-
breaking experiments such as MAQRO.26

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.nano-
lett.9b00082.

Harmonic approximation throughout studying (via both
experimental data and simulations) the nonlinear
dynamics of the system for high electric drivings.
Stability of the system as a way to minimize the
statistical error in our protocol. Simulations of the
electric field and error estimations for all the variables
involved in our method (with particular attention on the
electric field and the bath temperature) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: francesco.ricci@icfo.eu.
*E-mail: romain.quidant@icfo.eu.
ORCID
F. Ricci: 0000-0002-5971-3369
G. P. Conangla: 0000-0002-3228-1527
R. Quidant: 0000-0001-8995-8976

Figure 3. Results of mass calculation. The mass of the levitated
nanoparticle m is calculated for different driving frequencies ωdr. Error
bars correspond to the statistical error σm

stat, calculated from a
reproducibility measurement of 20 independent data sets of same
experimental conditions: ω = 125kHzdr and =SNR 60. The
measurement is shown to be independent from the chosen driving
frequency ωdr, and the standard deviation (green horizontal lines)
displays compatibility with the statistical error. Values reported in
Table 1 correspond the red-highlighted point at ω = 125 kHzdr .

Nano Letters Letter

DOI: 10.1021/acs.nanolett.9b00082
Nano Lett. 2019, 19, 6711−6715

6714

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b00082/suppl_file/nl9b00082_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b00082/suppl_file/nl9b00082_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b00082/suppl_file/nl9b00082_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b00082/suppl_file/nl9b00082_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b00082/suppl_file/nl9b00082_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00082
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00082
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b00082/suppl_file/nl9b00082_si_001.pdf
mailto:francesco.ricci@icfo.eu
mailto:romain.quidant@icfo.eu
http://orcid.org/0000-0002-5971-3369
http://orcid.org/0000-0002-3228-1527
http://orcid.org/0000-0001-8995-8976
http://dx.doi.org/10.1021/acs.nanolett.9b00082


Author Contributions
F.R. and A.S. conceived the experiment. F.R. designed and
implemented the experimental setup and wrote all data
acquisition software. F.R. and M.T. performed the experiment
and analyzed the data, with inputs from G.P. Montecarlo and
COMSOL simulations were performed by G.P. and M.T.,
respectively. All authors contributed to manuscript writing.
R.Q. and A.S. supervised the work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge financial support from the ERC-QnanoME-
CA (Grant No. 64790), the Spanish Ministry of Economy and
Competitiveness, under grant FIS2016-80293-R and through
the “Severo Ochoa” Programme for Centres of Excellence in
R&D (SEV-2015-0522), Fundacio ́ Privada CELLEX, and from
the CERCA Programme/Generalitat de Catalunya. We also
acknowledge N. Meyer and the rest of the PNO trapping team.
F.R. acknowledges Dr. M. Frimmer and Prof. L. Novotny from
ETH (Zurich) for valuable discussions and A. Bachtold
(ICFO) for providing a general perspective on the accuracy
of mechanically resonating nanosensors.

■ REFERENCES
(1) Moser, J.; Güttinger, J.; Eichler, A.; Esplandiu, M. J.; Liu, D. E.;
Dykman, M. I.; Bachtold, A. Nat. Nanotechnol. 2013, 8, 493.
(2) Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.;
Bachtold, A. Nat. Nanotechnol. 2012, 7, 301.
(3) Cleland, A. N.; Roukes, M. L. Nature 1998, 392, 160.
(4) Yin, Z. Q.; Geraci, A. A.; Li, T. C. Int. J. Mod. Phys. B 2013, 27,
1330018.
(5) Norte, R. A.; Moura, J. P.; Gröblacher, S. Phys. Rev. Lett. 2016,
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